Exercise 24

Let $\mathbf{b}=(3,1,1)$ and P be the plane through the origin given by $x+y+2 z=0$.
(a) Find an orthogonal basis for P. That is, find two nonzero orthogonal vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in P$.
(b) Find the orthogonal projection of \mathbf{b} onto P. That is, find $\operatorname{Proj}_{\mathbf{v}_{1}} \mathbf{b}+\operatorname{Proj}_{\mathbf{v}_{2}} \mathbf{b}$.

Solution

Part (a)

The equation of the plane can be written as

$$
x+y+2 z=(1,1,2) \cdot(x, y, z)=0
$$

The vector $(1,1,2)$ is orthogonal to the plane at every point. Choose values for x, y, and z that satisfy the equation, for example, $x=1, y=1$, and $z=-1$. Let this be \mathbf{v}_{1}.

$$
\mathbf{v}_{1}=(1,1,-1)
$$

To get a second vector in the plane orthogonal to the first, take the cross product of $(1,1,2)$ and v_{1}.

$$
\mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
1 & 1 & 2 \\
1 & 1 & -1
\end{array}\right|=-3 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}=(-3,3,0)
$$

Part (b)

$$
\begin{aligned}
\operatorname{Proj}_{\mathbf{v}_{1}} \mathbf{b}+\operatorname{Proj}_{\mathbf{v}_{2}} \mathbf{b} & =\left(\mathbf{b} \cdot \hat{\mathbf{v}}_{1}\right) \hat{\mathbf{v}}_{1}+\left(\mathbf{b} \cdot \hat{\mathbf{v}}_{2}\right) \hat{\mathbf{v}}_{2} \\
& =\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{\mathbf{1}}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2} \\
& =\frac{(3,1,1) \cdot(1,1,-1)}{1^{2}+1^{2}+(-1)^{2}}(1,1,-1)+\frac{(3,1,1) \cdot(-3,3,0)}{(-3)^{2}+3^{2}}(-3,3,0) \\
& =\frac{(3)(1)+(1)(1)+(1)(-1)}{3}(1,1,-1)+\frac{(3)(-3)+(1)(3)+(1)(0)}{18}(-3,3,0) \\
& =\frac{3}{3}(1,1,-1)+\frac{-6}{18}(-3,3,0) \\
& =(1,1,-1)+(1,-1,0) \\
& =(2,0,-1)
\end{aligned}
$$

